Crimes

Politics

Recent Stories

More Stories

More Story

MTH281: Mathematical Method I TMA3

MTH281: Mathematical Method I TMA3 Question 1 : Evaluate the second partial derivative of the functonf(x,y)=2x3y2+y3f(x,y)=2x3y2+y3 A.∂2f∂x2=12xy2,∂2f∂y2=4×3+6y,∂2f∂x∂y=12x2y∂2f∂x2=12xy2,∂2f∂y2=4×3+6y,∂2f∂x∂y=12x2y B.∂2f∂x2=12x2y2,∂2f∂y2=4x+6y,∂2f∂x∂y=10x2y∂2f∂x2=12x2y2,∂2f∂y2=4x+6y,∂2f∂x∂y=10x2y C.∂2f∂x2=12xy,∂2f∂y2=x3+y,∂2f∂x∂y=2x2y∂2f∂x2=12xy,∂2f∂y2=x3+y,∂2f∂x∂y=2x2y D.∂2f∂x2=5x3y2,∂2f∂y2=6×3+6y,∂2f∂x∂y=2x2y2∂2f∂x2=5x3y2,∂2f∂y2=6×3+6y,∂2f∂x∂y=2x2y2   Question 2 : Compute the third derivative ofsinxInxsin⁡xInxusing Leibnitz theorem A.(2x−2−3x−2)cosx−(3x−3+In2x)sinx B.(x−3−x−2)cosx−(x−2+Inx)cosx C.(2x−3−3x−1)sinx−(3x−2+Inx)cosx D.(3x−3−4x−1)sinx−(3x−2+Inx)sinx Read More

Gossips

WhatsApp chat