# MTH102: Elementary Mathematics Ii TMA1

Question 1 : Given2x5+x2−5t2, finddydxby using the first principle
A.6t2+10t−3
B.t2+5t−3
C. c−t−2+8t−3
D.6t+7t−3

Answer to question 1 is A.6t2+10t−3

Question 2 : Find the derivativef(x)=2x2−16x+35by using first principle
A.x+16
B.3x−5
C.2x−8
D.4x−16

Like Our Facebook page

Answer to question 2 is D.4x−16

Question 3 : Giveny(x)=x4−4x3+3x2−5x, evaluated4ydx4
A. 30
B. 22
C. 42
D. 24

Answer to question 3 is D. 24

READ ALSO  Sanusi Dethrone: The Curse of Agaba Idu MUST be cleansed

Question 4 : Evaluate the limitlimx→∞6e4x−e−2x8e4x−e2x+3e−x
A.34
B.14
C.12
D.35

Answer to question 4 is A. 3/4

Question 5 : Differentiatey=3√(x2)(2x−x2)with respect to x
A.y=5x233−4x533
B.y=10x233+8x533
C.y=5x233+4x533
D.y=10x233−8x533

Answer to question 5 is C.y=5x233+4x533

Question 6 : Evaluate the limitlimh→02(−3+h)2−18h
A. 12
B. 6
C. 14
D. 8

Answer to question 6 is A. 12

Question 7 : Evaluate the limitlimt→4t−√(3+4)4−t
A.−18
B.−58
C.−38
D.34

READ ALSO  Army Officer Working With Taraba Billionaire Kidnapper Identified[PHOTO] - Chidi Cali

Answer to question 7 is B. -5/8

Question 8 : Differentiate with respect to x:f(x)=(ax3+bx)
A.3a−b
B.ax2+b
C.3ax2+b
D.3x2+1

Answer to question 8 is C.3ax2+b

Question 9 : Evaluate the limitlimx→−∞x2−5t−92x4+3x3
A. 4
B. 1
C. 2
D. 0

Answer to question 9 is A. 4

Question 10 : Evaluate the limitlimx→∞2x4−x2+8x−5x4+7

B.13
C.12
D.34

Answer to question 10 is C. 12

READ ALSO  CHM191 INTRODUCTORY PRACTICAL CHEMISTRY 1 TMA3 QUESTIONS AND ANSWERS

Want To Support Us By Donating Click Here

vote
Article Rating

Subscribe
Notify of